Abstract
We study the two-stage stochastic convex optimization problem whose first- and second-stage feasible regions admit a self-concordant barrier. We show that the barrier recourse functions and the composite barrier functions for this problem form self-concordant families. These results are used to develop prototype primal interior point decomposition algorithms that are more suitable for a heterogeneous distributed computing environment. We show that the worst case iteration complexity of the proposed algorithms is the same as that for the short- and long-step primal interior algorithms applied to the extensive formulation of this problem. The generality of our results allows the possibility of using barriers other than the standard log-barrier in an algorithmic framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.