Abstract
A new scheme to cope with two-stage stochastic optimization problems uses a risk measure as the objective function of the recourse action, where the risk measure is defined as the worst-case expected values over a set of constrained distributions. This paper develops an approach to deal with the case where both the first and second stage objective functions are convex linear-quadratic. It is shown that under a standard set of regularity assumptions, this two-stage quadratic stochastic optimization problem with measures of risk is equivalent to a conic optimization problem that can be solved in polynomial time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.