Abstract
We report an algorithm of constructing linear and nonlinear potentials in the two-dimensional Gross-Pitaevskii equation subject to given boundary conditions, which allow for exact analytic solutions. The obtained solutions represent superfluid flows in inhomogeneous Bose-Einstein condensates. The method is based on the combination of the similarity reduction of the two-dimensional Gross-Pitaevskii equation to the one-dimensional nonlinear Schrödinger equation, the latter allowing for exact solutions, with the conformal mapping of the given domain, where the flow is considered, to a half space. The stability of the obtained flows is addressed. A number of stable and physically relevant examples are described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.