Abstract
The functional performance model (FPM) of heterogeneous processors has proven to be more realistic than the traditional models because it integrates many important features of heterogeneous processors such as the processor heterogeneity, the heterogeneity of memory structure, and the effects of paging. Optimal 1D matrix partitioning algorithms employing FPMs of heterogeneous processors are already being used in solving complicated linear algebra kernel such as dense factorizations. However, 2D matrix partitioning algorithms for parallel computing on heterogeneous processors based on their FPMs are unavailable. In this paper, we address this deficiency by presenting a novel iterative algorithm for partitioning a dense matrix over a 2D grid of heterogeneous processors and employing their 2D FPMs. Experiments with a parallel matrix multiplication application on a local heterogeneous computational cluster demonstrate the efficiency of this algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.