Abstract
The paper presents a new data partitioning algorithm for parallel computing on heterogeneous processors. Like traditional functional partitioning algorithms, the algorithm assumes that the speed of the processors is characterized by speed functions rather than speed constants. Unlike the traditional algorithms, it does not assume the speed functions to be given. Instead, it uses a computational kernel to estimate the speed functions of the processors for different problem sizes during its execution. This makes the algorithm distributed as its execution involves all the heterogeneous processors. The algorithm does not construct the complete speed function for each processor but rather builds and uses their partial estimates sufficient for optimal data distribution with a given accuracy. The low execution cost of this algorithm makes it ideal for employment in self-adaptable applications. Experiments with a parallel matrix multiplication application employing this algorithm are performed on a local heterogeneous computational cluster. The results show that the algorithm converges very fast and that its execution time is several orders of magnitude less than the total execution time of the application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.