Abstract

The problem of matrix partitioning for parallel matrix-matrix multiplication on heterogeneous processors has been extensively studied since the mid 1990s. During this time, previous research focused mainly on the design of efficient partitioning algorithms, optimally or sub-optimally partitioning matrices into rectangles. The optimality of the rectangular partitioning shape itself has never been studied or even seriously questioned. The accepted approach is that consideration of non-rectangular shapes will not significantly improve the optimality of the solution, but can significantly complicate the partitioning problem, which is already NP-complete even for the restricted case of rectangular shapes. There is no published research, however, supporting this approach. The shape of the globally optimal partitioning, and how the best rectangular partitioning compares with this global optimum, are still wide open problems. Solution of these problems will decide if new partitioning algorithms searching for truly optimal, and not necessarily rectangular, solutions are needed. This paper presents the first results of our research on the problem of optimal partitioning shapes for parallel matrix-matrix multiplication on heterogeneous processors. Namely, the case of two interconnected processors is comprehensively studied. We prove that, depending on performance characteristics of the processors and the communication link, the globally optimal partitioning will have one of just two well-specified shapes, one of which is rectangular and the other is non-rectangular. The theoretical analysis is conducted using an original mathematical technique proposed in the paper. It is shown that the technique can also be applied in the case of arbitrary numbers of processors. While comprehensive analysis of the cases of three and more processors is more complicated and the subject for future work, the paper does prove the optimality of some particular non-rectangular partitioning shapes for some combinations of performance characteristics of heterogeneous processors and communication links. The paper also presents experimental results demonstrating that the optimal non-rectangular partitioning can significantly outperform the optimal rectangular one on real-life heterogeneous HPC platforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.