Abstract
This paper develops an active sensing system for a bicycle to accurately track rear vehicles that can have two-dimensional motion. The active sensing system consists of a single-beam laser sensor mounted on a rotationally controlled platform. The sensing system is inexpensive, small, lightweight, consumes low power, and is thus ideally suited for the bicycle application. The rotational orientation of the laser sensor needs to be actively controlled in real-time in order to continue to focus on a rear vehicle, as the vehicle's lateral and longitudinal distances change. This tracking problem requires controlling the real-time angular position of the laser sensor without knowing the future trajectory of the vehicle. The challenge is addressed using a novel receding horizon framework for active control and an interacting multiple model framework for estimation. The features and benefits of this active sensing system are illustrated first using simulation results. Then, preliminary experimental results are presented using an instrumented bicycle to show the feasibility of the system in tracking rear vehicles during both straight and turning maneuvers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have