Abstract

In this paper, two tests, based on weighted CUSUM of the least squares residuals, are studied to detect in real time a change-point in a nonlinear model. A first test statistic is proposed by extension of a method already used in the literature but for the linear models. It is tested under the null hypothesis, at each sequential observation, that there is no change in the model against a change presence. The asymptotic distribution of the test statistic under the null hypothesis is given and its convergence in probability to infinity is proved when a change occurs. These results will allow to build an asymptotic critical region. Next, in order to decrease the type I error probability, a bootstrapped critical value is proposed and a modified test is studied in a similar way. A generalization of the Hájek–Rényi inequality is established.Simulation results, using Monte-Carlo technique, for nonlinear models which have numerous applications, investigate the properties of the two statistic tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.