Abstract

In most biomedical research, investigators hypothesize about the relationships of various factors, collect data to test those relationships, and try to draw conclusions about those relationships from the data collected. In many cases, investigators test relationships by comparing the average level of a factor between 2 groups or between 1 group and a standard reference. This framework is as true for understanding the basic role of cardiac myosin binding protein-C phosphorylation in cardiac physiology1 as it is for evaluating non–high-density lipoprotein cholesterol (HDL-C) as a predictor of myocardial infarction in large groups of individuals.2 In this article we describe hypothesis testing, which is the process of drawing conclusions on the basis of statistical testing of collected data, and the specific approach used to test means (or average levels of a collected data element). These concepts are covered in detail in many statistical textbooks at various levels, including Pagano and Gauvreau,3 Zar,4 and Kleinbaum et al.5 The purpose of statistical inference is to draw conclusions about a population on the basis of data obtained from a sample of that population. Hypothesis testing is the process used to evaluate the strength of evidence from the sample and provides a framework for making determinations related to the population, ie, it provides a method for understanding how reliably one can extrapolate observed findings in a sample under study to the larger population from which the sample was drawn. The investigator formulates a specific hypothesis, evaluates data from the sample, and uses these data to decide whether they support the specific hypothesis. The first step in testing hypotheses is the transformation of the research question into a null hypothesis, H, and an alternative hypothesis, HA.6 The null and alternative hypotheses are concise statements, usually in …

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.