Abstract

A method is presented for the unbiased numerical computation of two-particle response functions of correlated electron materials via a solution of the dynamical mean-field equations in the presence of a perturbing field. The power of the method is demonstrated via a computation of the Raman B(1g) and B(2g) scattering intensities of the two-dimensional Hubbard model in parameter regimes believed to be relevant to high-temperature superconductivity. The theory reproduces the "two-magnon" peak characteristic of the Raman intensity of insulating parent compounds of high-T(c) copper oxide superconductors, and shows how it evolves to a quasiparticle response, as carriers are added. The method can be applied in any situation where a solution of equilibrium dynamical mean-field equations is feasible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.