Abstract

We demonstrate surface-plasmon lasing in hexagonal metal hole arrays with a semiconductor gain medium. The device can be tuned between two laser modes, with distinct wavelengths, spatial distributions, and polarization patterns, by changing the size of the optically pumped area. One of the modes exhibits a six-fold polarization pattern, while the mode observed for larger pump spots has a rotationally symmetric polarization pattern. We explain the mode tuning by the differences of in-plane and radiative out-of-plane losses of the modes. The spatial and polarization properties of the modes are conveniently described by a sum of vectorial orbital angular momentum beams with orbital, spin, and total angular momentum j=ℓ+s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.