Abstract

We present a study of the properties of the transversal "spin angular momentum" and "orbital angular momentum" operators. We show that the "spin angular momentum" operators are generators of spatial translations which depend on helicity and frequency and that the "orbital angular momentum" operators generate transformations which are a sequence of this kind of translations and rotations. We give some examples of the use of these operators in light matter interaction problems. Their relationship with the helicity operator allows to involve the electromagnetic duality symmetry in the analysis. We also find that simultaneous eigenstates of the three "spin" operators and parity define a type of standing modes which has been recently singled out for the interaction of light with chiral molecules. With respect to the relationship between "spin angular momentum", polarization, and total angular momentum, we show that, except for the case of a single plane wave, the total angular momentum of the field is decoupled from its vectorial degrees of freedom even in the regime where the paraxial approximation holds. Finally, we point out a relationship between the three "spin" operators and the spatial part of the Pauli-Lubanski four vector.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call