Abstract
We elucidate the relation between the two ways of formulating causality in nonlocal quantum field theory: using analytic test functions belonging to the space $S^0$ (which is the Fourier transform of the Schwartz space $\mathcal D$) and using test functions in the Gelfand-Shilov spaces $S^0_\alpha$. We prove that every functional defined on $S^0$ has the same carrier cones as its restrictions to the smaller spaces $S^0_\alpha$. As an application of this result, we derive a Paley-Wiener-Schwartz-type theorem for arbitrarily singular generalized functions of tempered growth and obtain the corresponding extension of Vladimirov's algebra of functions holomorphic on a tubular domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.