Abstract
Forward error propagation is an established technique for uncertainty quantification (UQ). This article covers practical applications of forward error propagation in the context of particle counting measurements. We begin by presenting pertinent error models, including the Poisson noise model, and assess their role in UQ. Next, we describe several basic techniques for UQ, including Gauss’s formula, its generalization to the Law of Propagation of Uncertainty (LPU), and the use of Monte Carlo (MC) sampling. We conclude with demonstrations of increasing complexity, including total number concentration, total mass concentration, penetration, and mass-based filtration efficiency scenarios. These examples serve two functions: (1) providing examples in which theoretical concepts are practically applied to interpret particle counting data and (2) presenting expressions that can be used to compute uncertainties for specific problems in particle counting measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.