Abstract
Rotary dry cutting and rectifying of ceramic tiles are sources of fine particulate matter (PM2.5) and nanoparticles (NPs). These activities are typically carried out inside industrial facilities during the manufacturing process, as well as outdoors and in residential indoor spaces during the installation phase, where mitigation measures are seldom implemented. This work aimed to understand the particle formation and release mechanisms, as well as particle properties (physical, chemical, and toxicological) and potential impacts on human health and the environment, for particles generated during ceramic tile rotary dry cutting operations. Aerosols were characterised in terms of particle number and mass concentrations, chemical composition, morphology and in vitro cytotoxicity. Two types of commercially available and representative tiles were tested in controlled chamber experiments: porous and non-porous ceramic body tiles (referred to in this work as A and B types, respectively). Results evidenced the release of fine particles and NPs during dry cutting of both materials, in comparable concentrations (20.000–45.000/cm3, 1-min average). However, the particle size distribution was significantly finer from A tiles (70% of the particle number concentration was nanosized (<100 nm)) in comparison to B tiles (<20%). While airborne particle chemical profiles were similar for both types of materials in the coarser size fractions (>0.6 μm), in the smaller size fractions (<0.6 μm) larger differences were observed. The chemical composition of airborne aerosols was consistent with that of the deposited dust. In vitro cytotoxicity responses evidenced statistically significant differences between exposure to aerosols from both types of tiles: cell viability was lower after exposure to aerosols from A tiles (50% at the original concentration) compared to those from B tiles, which exhibited high cell viability regardless of the aerosol concentration. Overall, results evidenced NP formation and release during rotary dry cutting of ceramic tiles, varying physical-chemical and cytotoxic profiles as a function of the material being processed, and highlight this activity as a potential health hazard in scenarios where prevention and mitigation measures are not implemented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.