Abstract
Turbulence is often studied by tracking its spatiotemporal evolution and analyzing the dynamics of its different scales. The dual to this perspective is that of an observer who starts from measurements, or observations, of turbulence and attempts to identify their back-in-time origin, which is the foundation of data assimilation. This back-in-time search must contend with the action of chaos, which obfuscates the interpretation of the observations. When the available measurements satisfy a critical resolution threshold, the influence of chaos can be entirely mitigated and turbulence can be synchronized to the exact state–space trajectory that generated the observations. The critical threshold offers a new interpretation of the Taylor microscale, one that underscores its causal influence. Below the critical threshold, the origin of measurements becomes less definitive in regions where the flow is inconsequential to the observations. In contrast, flow events that influence the measurements, or are within their domain of dependence, are accurately captured. The implications for our understanding of wall turbulence are explored, starting with the highest density of measurements that entirely tame chaos and proceeding all the way to an isolated measurement of wall stress. The article concludes with a discussion of future opportunities and a call to action.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have