Abstract
Cu-Zn bimetallic catalysts were synthesized on 3-D gas diffusion electrodes using atomic layer deposition (ALD) techniques. Electrochemical CO2 reduction was evaluated, and a significant variation in the product selectivity was observed compared to unmodified Cu catalysts. As low as a single ALD cycle of ZnO resulted in a reduction of C2H4 production and shift towards CO selectivity, which is attributed to changes in the chemical state of the surface. Our findings demonstrate the impact of atomically-precise surface modifications on electrocatalyst selectivity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have