Abstract
The capability of embedded piezoelectric wafer active sensors (PWAS) to excite and detect tuned Lamb waves for structural health monitoring is explored. First, a brief review of Lamb waves theory is presented. Second, the PWAS operating principles and their structural coupling through a thin adhesive layer are analyzed. Then, a model of the Lamb waves tuning mechanism with PWAS transducers is described. The model uses the space domain Fourier transform. The analysis is performed in the wavenumber space. The inverse Fourier transform is used to return into the physical space. The integrals are evaluated with the residues theorem. A general solution is obtained for a generic expression of the interface shear stress distribution. The general solution is reduced to a closed-form expression for the case of ideal bonding which admits a closed-form Fourier transform of the interfacial shear stress. It is shown that the strain wave response varies like sin a, whereas the displacement response varies like sinc a. Maximum coupling is achieved when the PWAS length equals the half wavelength of a particular Lamb wave mode. Since Lamb wave modes wavelengths vary with frequency, the tuning of certain modes at certain frequencies can thus be achieved. Tuning curves are derived and verified against experimental results. A particular S0 mode ‘sweet spot’ is found at 300 kHz for a 7-mm PWAS attached to a 1.6-mm aluminum plate. Crack detection via the pulse echo technique using the phased array principle and tuned S0 mode Lamb waves is demonstrated as an effective structural health monitoring method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.