Abstract

Piezoelectric wafer active sensors have been widely used for Lamb-wave generation and acquisition. For selective preferential excitation of a certain Lamb-wave mode and rejection of other modes, the piezoelectric wafer active sensor size and the excitation frequency should be tuned. However, structural damping depends on the structure material and the excitation frequency and it will affect the amplitude response of piezoelectric wafer active sensor–excited Lamb waves in the structure, that is, tuning curves. Its influence on the piezoelectric wafer active sensor tuning reflects the effect of structural health monitoring configuration considered in the excitation. Therefore, it is important to have knowledge about the effect of structural damping on the tuning between piezoelectric wafer active sensor and Lamb waves. In this article, the analytical tuning solution of undamped media is extended to damped materials using the Kelvin–Voigt damping model, in which a complex Young’s modulus is utilized to include the effect of structural damping as an improvement over existing models. This extension is particularly relevant for the structural health monitoring applications on high-loss materials, such as metallic materials with viscoelastic coatings and fiber-reinforced polymer composites. The effects of structural damping on the piezoelectric wafer active sensor tuning are successfully captured by the improved model, with experimental validations on an aluminum plate with adhesive films on both sides and a quasi-isotropic woven composite plate using circular piezoelectric wafer active sensor transducers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.