Abstract

This paper experimentally and theoretically investigates the effect of the underlayer medium on tuning of the surface plasmon resonance (SPR) wavelength of silver island films, and the effect of substrate temperature on the morphologies and optical properties of the films. From the absorption spectra of single Ag with various thickness and overcoated (Ag/TiO2) films deposited on glass substrates at various substrate temperatures by RF magnetron sputtering, we demonstrate that the surface plasmon resonance wavelength can be made tunable by changing the underlayer medium, the thickness of metal layer and the substrate temperature. By varying substrate temperatures, the interparticle coupling effects on plasmon resonances of nanosilver particles enhance as the spacing between the particles reduces. When the substrate temperature is up to 500°C, the absorption peak decreases sharply and shifts to shorter wavelength side due to the severe coalescence between silver islands in the film.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call