Abstract

We investigate the local electron temperature distribution in graphene nanoribbon and graphene junctions subject to an applied thermal gradient. Using a realistic model of a scanning thermal microscope, we predict quantum temperature oscillations whose wavelength is related to that of Friedel oscillations. Experimentally this wavelength can be tuned over several orders of magnitude by gating or doping, bringing quantum temperature oscillations within reach of the spatial resolution of existing measurement techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.