Abstract

In this present work, we investigate the electronic transport properties of phosphorus-doped armchair graphene nanoribbon (AGNR) junctions by employing nonequilibrium Green's functions in combination with the density-function theory. Two phosphorus (P) atoms are considered to substitute the central carbon atom with the different width of AGNRs. The results indicate that the electronic transport behaviors are strongly dependent on the width of the P-doped graphene nanoribbons. The current-voltage characteristics of the doped AGNR junctions reveal an interesting negative differential resistance (NDR) and exhibit three distinct family (3 n, 3 n + 1, 3 n + 2) behaviors. These results display that P doping is a very good way to achieve NDR of the graphene nanoribbon devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call