Abstract

Employing nonequilibrium Green's Functions in combination with density functional theory, the electronic transport properties of armchair graphene nanoribbon (GNR) devices with various widths are investigated in this work. In the adopted model, two semi-infinite graphene electrodes are periodically doped with boron or nitrogen atoms. Our calculations reveal that these devices have a striking nonlinear feature and show notable negative differential resistance (NDR). The results also indicate the diode-like properties are reserved and the rectification ratios are high. It is found the electronic transport properties are strongly dependent on the width of doped nanoribbons and the positions of dopants and three distinct families are elucidated for the current armchair GNR devices. The NDR as well as rectifying properties can be well explained by the variation of transmission spectra and the relative shift of discrete energy states with applied bias voltage. These findings suggest that the doped armchair GNR is a promising candidate for the next generation nanoscale device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call