Abstract
We demonstrate, for the first time, the use of a solution-processed reduced graphene oxide (rGO) layer as a work function tunable electrode in vertical Schottky barrier (SB) transistors. The rGO electrodes were deposited by simple spray-coating onto the substrate. The vertical device structure was formed by sandwiching a N,N′-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) organic semiconductor between rGO and Al electrodes. By varying the voltage applied to the gate electrode, the work function of rGO and thus the SB formed at the rGO-PTCDI-C8 interface could be effectively modulated. The resulting vertical SB transistors based on rGO-PTCDI-C8 heterostructures exhibited excellent electrical properties, including a maximum current density of 17.9 mA/cm2 and an on–off current ratio >103, which were comparable with the values obtained for the devices based on a CVD-grown graphene electrode. The charge injection properties of the vertical devices were systematically investigated through temperature-depende...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.