Abstract
The tumor necrosis factor receptor (TNFR)-associated factor 4 (TRAF4) is a member of TRAF family proteins that act as major signal transducers of the TNF receptor and the interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) superfamily. TRAF4 has been reported to be overexpressed in various human cancers. However, the exact mechanisms that regulate the expression of TRAF4 still remain elusive. The objective of the present study was to investigate the regulatory mechanism of TRAF4 expression in prostate cancer. We initially identified microRNA-29a (miR‑29a) as a possible candidate to bind TRAF4 3' untranslated region (3'UTR) by the algorithm, TargetScan. The expression of TRAF4 mRNA and protein was inversely associated with miR-29a expression in prostate cancer cell lines (LNCaP, DU145 and PC3). TRAF4 expression was reduced by the introduction of mimic miR-29a in LNCaP cells. Luciferase activity from the construct harboring wild-type TRAF4 3'UTR was reduced by the mimic miR-29a and this reduction was diminished by introducing mutations at the predicted miR-29a binding site. On the other hand, TRAF4 was upregulated when transfected with the inhibitor of miR-29a in DU145 and PC3 cells. TRAF4 was significantly upregulated in patients with metastatic prostate cancer compared to those with localized prostate cancer. Furthermore, there was a significant inverse correlation between TRAF4 and miR-29a expression in tumor tissues from radical prostatectomy. Considered together, our results suggest that the tumor suppressor microRNA, miR-29a, is one of the regulators of TRAF4 expression in metastatic prostate cancer.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have