Abstract

Huntington disease (HD) is a neurodegenerative disorder caused by an expansion of polyglutamines in the first exon of huntingtin (HTT), which confers aggregation-promoting properties to amino-terminal fragments of the protein (N-HTT). Mutant N-HTT aggregates are enriched for ubiquitin and contain ubiquitin E3 ligases, thus suggesting a role for ubiquitination in aggregate formation. Here, we report that tumor necrosis factor receptor-associated factor 6 (TRAF6) binds to WT and polyQ-expanded N-HTT in vitro as well as to endogenous full-length proteins in mouse and human brain in vivo. Endogenous TRAF6 is recruited to cellular inclusions formed by mutant N-HTT. Transient overexpression of TRAF6 promotes WT and mutant N-HTT atypical ubiquitination with Lys6, Lys27, and Lys29 linkage formation. Both interaction and ubiquitination seem to be independent from polyQ length. In cultured cells, TRAF6 enhances mutant N-HTT aggregate formation, whereas it has no effect on WT N-HTT protein localization. Mutant N-HTT inclusions are enriched for ubiquitin staining only when TRAF6 and Lys6, Lys27, and Lys29 ubiquitin mutants are expressed. Finally, we show that TRAF6 is up-regulated in post-mortem brains from HD patients where it is found in the insoluble fraction. These results suggest that TRAF6 atypical ubiquitination warrants investigation in HD pathogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.