Abstract

Transthyretin Familial Amyloid Polyneuropathy (TTR-FAP) is a rare and disabling neurological disorder caused by a mutation of the transthyretin gene. One of the disease's characteristics that mostly affects patients' quality of life is its influence on locomotion, with a variable evolution timing. Quantitative motion analysis is useful for assessing motor function, including gait, in diseases affecting movement. However, it is still an evolving field, especially in TTR-FAP, with only a few available studies. A single markerless RGB-D camera provides 3-D body joint data in a less expensive, more portable and less intrusive way than reference multi-camera marker-based systems for motion capture. In this contribution, we investigate if a gait analysis system based on a RGB-D camera can be used to detect gait changes over time for a given TTR-FAP patient. 3-D data provided by that system and a reference system were acquired from six TTR-FAP patients, while performing a simple gait task, once and then a year and a half later. For each gait cycle and system, several gait parameters were computed. For each patient, we investigated if the RBG-D camera system is able to detect the existence or not of statistically significant differences between the two different acquisitions (separated by 1.5 years of disease evolution), in a similar way to the reference system. The obtained results show the potential of using a single RGB-D camera to detect relevant changes in spatiotemporal gait parameters (e.g., stride duration and stride length), during TTR-FAP patient follow-up.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call