Abstract

Heart failure refers to the inability of the heart to pump enough amount of blood to the body. Nearly 7 million people die every year because of its complications. Current gold-standard screening techniques through echocardiography do not incorporate information about the circadian rhythm of the heart and clinical information of patients. In this vein, we propose a novel approach to integrate 24-hour heart rate variability (HRV) features and patient profile information in a single multi-parameter and color-coded polar representation. The proposed approach was validated by training a deep learning model from 7,575 generated images to predict heart failure groups, i.e., preserved, mid-range, and reduced left ventricular ejection fraction. The developed model had overall accuracy, sensitivity, and specificity of 93%, 88%, and 95%, respectively. Moreover, it had a high area under the receiver operating characteristics curve (AUROC) of 0.88 and an area under the precision-recalled curve (AUPR) of 0.79. The novel approach proposed in this study suggests a new protocol for assessing cardiovascular diseases to act as a complementary tool to echocardiography as it provides insights on the circadian rhythm of the heart and can be potentially personalized according to patient clinical profile information.Clinical relevance- Implementing polar representations with deep learning in clinical settings to supplement echocardiography leverages continuous monitoring of the heart's circadian rhythm and personalized cardiovascular medicine while reducing the burden on medical practitioners.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.