Abstract

Currently, there is no widely accepted consensus regarding a consistent thermodynamic framework within the special relativity paradigm. However, by postulating that the inverse temperature 4-vector, denoted as β, is future-directed and time-like, intriguing insights emerge. Specifically, it is demonstrated that the q-dependent Tsallis distribution can be conceptualized as a de Sitterian deformation of the relativistic Maxwell-Jüttner distribution. In this context, the curvature of the de Sitter space-time is characterized by Λ/3, where Λ represents the cosmological constant within the ΛCDM standard model for cosmology. For a simple gas composed of particles with proper mass m, and within the framework of quantum statistical de Sitterian considerations, the Tsallis parameter q exhibits a dependence on the cosmological constant given by q=1+ℓcΛ/n, where ℓc=ℏ/mc is the Compton length of the particle and n is a positive numerical factor, the determination of which awaits observational confirmation. This formulation establishes a novel connection between the Tsallis distribution, quantum statistics, and the cosmological constant, shedding light on the intricate interplay between relativistic thermodynamics and fundamental cosmological parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call