Abstract

Calcite (CaCO3) is one of the most abundant minerals on earth and plays an important role in a wide range of different fields including, for example, biomineralization and environmental geochemistry. Consequently, surface processes and reactions such as dissolution and growth as well as (macro)molecule adsorption are of greatest interest for both applied as well as fundamental research. An in-depth understanding of these processes requires knowledge about the detailed surface structure in its natural state which is quite often a liquid environment. We have studied the most stable cleavage plane of calcite under liquid conditions using frequency modulation atomic force microscopy. Using this technique, we achieved true atomic-resolution imaging, demonstrating the high-resolution capability of frequency modulation atomic force microscopy in liquids. We could reproduce contrast features reported before using contact mode atomic force microscopy, originating from the protruding oxygen atom of the carbonate groups. Besides this contrast, however, our results, indeed, indicate that we obtain more detailed structural information, revealing the calcium sublattice of the (1014) cleavage plane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call