Abstract

A molecular-scale understanding of self-assembled monolayers (SAMs) of sulfonate-terminated alkanethiols is crucial for interfacial studies of functionalized SAMs and their various applications. However, such an understanding has been difficult to achieve because of the lack of direct information on these molecular-scale structures in real space. In this study, we investigated the structures of sulfonate SAMs of sodium 11-mercapto-1-undecanesulfonate (MUS) by frequency modulation atomic force microscopy (FM-AFM) in liquid. The subnanometer-resolution FM-AFM images showed that the single-component MUS SAM prepared in pure water had random surface structures. In contrast, the MUS SAM prepared in a water–ethanol mixed solvent showed periodic striped structures with a flat-lying conformation. The results suggest a significant solvent effect on molecular-scale structures of long-chain sulfonate SAMs. In addition, we investigated the molecular-scale structures of mixed SAMs of MUS and 11-mercapto-1-undecanol (MUO) with alkane chains of the same length. The FM-AFM images of the mixed SAMs showed clear phase separation between MUS SAM and MUO SAM domains. In the MUO SAM domains, the incorporated MUS molecules appeared as protrusions. The results obtained in this study provide direct structural information on long-chain sulfonate and mixed SAMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call