Abstract
Denervation of renal or perirenal adipose tissue (PRAT) can reduce arterial blood pressure in various hypertensive experimental models. Trpv1 (transient receptor potential vanillin 1) channel is highly expressed in the renal sensory nerves and the dorsal root ganglias (DRGs) projected by PRAT. However, it is currently unclear whether Trpv1 in DRGs projected from PRAT can regulate renal hypertension. We used resintoxin (RTX) to block the afferent sensory nerves of rat PRAT. We also constructed Trpv1 -/- mice and Trpv1 +/- mice or used the injection of AAV2-retro-shTrpv1 to detect the effects of Trpv1 knockout or knockdown of PRAT-projected DRGs on deoxycorticosterone acetate (DOCA)-Salt-induced hypertension and kidney injury. Blocking the afferent sensory nerves of PRAT with RTX can alleviate DOCA-Salt-induced hypertension and renal injury in rats. And this blockade reduces the expression of Trpv1 in the DRGs projected by PRAT. Injecting AAV2-retro-shTrpv1 into the PRAT of DOCA-Salt mice also achieved the same therapeutic effect. However, DOCA-Salt-induced hypertension and renal injury can be treated in Trpv1 +/- mice but not alleviated or even worsened in Trpv1 -/- mice, possibly because of compensatory increase of Trpv5 in DRG of Trpv1 -/- mice. Reducing, rather than eliminating, Trpv1 in DRG from PRAT-projection can reduce blood pressure and kidney damage in DOCA-Salt in rats or mice. Trpv1 in PRAT-DRGs may serve as a therapeutic target for salt-sensitive hypertension and its renal complications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have