Abstract

Triphenyltin (TPT) is an endocrine disruptor that has polluted the global environment, and thus far, information regarding the mechanisms of TPT biodegradation and intracellular material release is limited. Here, TPT biodegradation was conducted by using Brevibacillus brevis. Degradation affecting factors, metabolite formation, ion and protein release, membrane permeability, and cell viability after degradation were investigated to reveal the biodegradation mechanisms. The results showed that TPT could be degraded simultaneously to diphenyltin and monophenyltin, with diphenyltin further degraded to monophenyltin, and ultimately to inorganic tin. During degradation process, B. brevis metabolically released Cl− and Na+, and passively diffused Ca2+. Protein release and membrane permeability were also enhanced by TPT exposure. pH ranging from 6.0 to 7.5 and relatively high biomass dosage in mineral salt medium improved TPT degradation. Biodegradation efficiency of 0.5mgL−1 TPT by 0.3gL−1B. brevis at 25°C for 5d was up to 80%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.