Abstract

Triphenyltin (TPT) is an endocrine disruptor highly toxic to non-target organisms, and has contaminated the environment worldwide. To accelerate TPT elimination, the study on the behavior and mechanism of TPT biosorption and biodegradation by Brevibacillus brevis was conducted. The results revealed that TPT and coexisted Cu2+, Cd2+, Pb2+ and Zn2+ in solution could be adsorbed effectively by B. brevis, and TPT was further transformed to diphenyltin, monophenyltin and tin intracellularly. The removal efficiency of 0.5mgL−1 TPT after degradation by 0.3gL−1 biomass for 5d was about 60%. Suitable kinds and levels of oxygen, nutrient, surfactant and metals obviously improved TPT biodegradation. When concentrations of H2O2, glucose, rhamnolipid, Cu2+ and Zn2+ varied from 1.5 to 6mmol L−1, 0.5 to 5mgL−1, 5 to 25mgL−1, 0.5 to 6mgL−1 and 0.5 to 1mgL−1, separately, TPT biodegradation efficiencies increased 15–25%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.