Abstract

The collisional mixing of thin metal markers in silicon is investigated with the computer program TRIM-DYNAMIC (T-DYN). This code assumes that, at high dose irradiation, the substrate Si or Ge will get fully amorphized, and the recoil atom can stop in any position after slowing down below a certain final energy E f (taken here as 3 eV). In order to avoid chemical effects, the system of a Au marker in a silicon matrix was chosen for the TRIM simulation. The results are in good agreement with the experimental findings, as compiled in the review article by Paine and Averback [Nucl. Instr. and Meth. B 7/8 (1985) 666]. Similar collisional mixing effects occur in the process of SIMS or AES depth profiling and cannot be avoided. Examples are given here for a thin film of antimony, which was vapor deposited on silicon and covered by amorphous silicon, and an arsenic implant of 0.5 keV in silicon which was known to exhibit no channeling tails. The analysing beam was 1 keV Ar + incident at 45°. Good agreement was found between the T-DYN simulations and the experimental results obtained with SIMS measurements using modern depth profiling equipment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.