Abstract
Purpose This study aims to investigate the potential of wood as a water-lubricated bearing material, determine the factors influencing the water-lubricated properties of wood and identify suitable alternatives to Lignum vitae. Design/methodology/approach Three resource-abundant wood species, Platycladus orientalis, Cunninghamia lanceolata and Betula platyphylla, were selected, and their properties were compared with those of Lignum vitae. The influencing mechanism of the tribological properties of different woods under water lubrication was thoroughly analyzed, in conjunction with the characterization and testing of mechanical properties, micromorphology and chemical composition. Findings The findings reveal that the mechanical properties and inclusions of wood are the primary factors affecting its tribological properties, which are significantly influenced by the micromorphology and chemical composition. The friction experiment results demonstrate that Lignum vitae exhibits the best tribological properties among the four wood species. The tribological properties of Platycladus orientalis are comparable to those of Lignum vitae, being only 17.1% higher. However, it is noted that higher mechanical properties can exacerbate the wear of the grinding pair. Originality/value The originality of this study lies in the combination of friction experiments and wood performance tests to identify the factors contributing to the superior water lubrication performance of wood, thereby guiding the application and improvement of different wood types in water-lubricated bearings. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2024-0284/
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.