Abstract

To enhance the tribological performance of mechanical parts, one of the reliable methods is surface topography modification, in which the surface of one/both interacting contacts were to be modified. Surface texturing is one of the surface modification techniques. In the present work, a numerical code is developed to address the effect of texture shape (elliptical and triangular), size and distribution (parallel and zigzag) on the tribological performance parameters (minimum film thickness, percentage of hydrodynamic load from the total generated pressure and frictional coefficient) under mixed lubrication regime for a known value of load support. In the present analysis, the mass conservative, i.e. Jakobson-Floberg-Ollson (JFO) cavitation condition and couple stresses of lubricant are considered. In addition, surface irregularities are considered by using the flow factors of Patir-Cheng model. The results show that texture shape has a significant effect, whereas the texture distribution has a slight effect on the tribological performance parameters. Moreover, the couple stress of lubricant has a prominent effect on the tribological performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call