Abstract

In recent years, the efforts to better control friction and wear have focused on surface topography modification through surface texturing. To study the mutual influence of surface roughness and texture features, this paper developed one comprehensive mathematical model of mixed lubrication to study the tribological performance of the rough-textured conjunction. The typical ring-liner conjunction was chosen as the research object. In particular, the effects of skewness and kurtosis were considered based on the non-Gaussian distribution of asperity height. In this way, the influences of non-Gaussian distribution properties and surface texturing on the tribological performance were analyzed. The results show that the influences of skewness and kurtosis on the tribological performance are nontrivial and should not be neglected in the mixed lubrication. Compared to the Gaussian distribution, considering the non-Gaussian distribution can represent the physical rough surfaces more accurately. Surfaces with negative skewness were found to generally result in better tribological properties. Moreover, the tribological performance improved by surface texturing can also be improved or reduced by the effect of skewness and kurtosis. As a result, the optimization of surface texturing should take the effects of roughness parameters into account.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call