Abstract
Surface texturing is a viable technique to enhance the tribological performance of sliding interacting contacts. Single-scaled surface textures exhibit better tribological performance only at hydrodynamic lubrication regime (fluid film pressure) but not in mixed lubrication regime where fluid film pressure and asperity contact pressure co-exists. In most of the machinery with the increase in load and/or decrease in speed, there is a shift of lubrication regime from hydrodynamic to mixed lubrication. To address this, the present work proposed a multi-scale (a combination of shallow and deep) textures concept. A numerical model is developed to study its effect on the tribological characteristics of parallel sliding contacts by considering mixed lubrication regime and mass-conservative cavitation condition. It has been observed that multi-scaled textures exhibit superior results in comparison with single-scaled textures. Moreover, improved tribological characteristics are observed when shallow surface textures are placed first towards the fluid inlet flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.