Abstract
ABSTRACTHistorical variability in sea surface temperature (SST) in the North Atlantic (NA) is examined using trend and Empirical Orthogonal Function (EOF) analyses of annual and summer means from three interpolated monthly datasets: Hadley Centre Sea Ice and Sea Surface Temperature (HadISST1), Extended Reconstruction of SST (ERSST), and Centennial in situ Observation-Based Estimates (COBE). Comparisons with time series of upper-ocean temperature from four monitoring sites off Atlantic Canada reveal substantial similarity in the interannual to multi-decadal variability but notable differences in the longer-term trends. The magnitude of decadal-scale variability is comparable to, or greater than, the long-term changes in all of the datasets; together with the trend discrepancies, this needs to be considered in climate change applications. Averaged over the NA, the annual means have a long-term increasing trend and a pronounced multi-decadal variation, resembling those in global mean (land-ocean) surface temperature and the Atlantic Multi-decadal Oscillation (AMO). There is remarkable similarity in the spatial and temporal variability of the three leading EOF modes from the different gridded datasets, with the first highly correlated with the AMO, the second modestly correlated with the winter North Atlantic Oscillation, and the third apparently related to ocean circulation variability. Trends since 1981 are generally two to three times larger than those since 1900 and 1950, which is at least partly related to the phase of the AMO. Trends in the summer means are generally larger than in the annual means. Overall, the results provide support for both anthropogenic global warming and decadal-scale natural variations making important contributions to ocean climate variability in the Northwest Atlantic.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have