Abstract

Abstract This study uses models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to evaluate and investigate Sahel rainfall multidecadal variability and teleconnections with global sea surface temperatures (SSTs). Multidecadal variability is lower than observed in all historical simulations evaluated. Focus is on teleconnections with North Atlantic SST [Atlantic multidecadal variability (AMV)] as it is more successfully simulated than the Indian Ocean teleconnection. To investigate why some models successfully simulated this teleconnection and others did not, despite having similarly large AMV, two groups of models were selected. Models with large AMV were highlighted as good (or poor) by their ability to simulate relatively high (low) Sahel multidecadal variability and have significant (not significant) correlation between multidecadal Sahel rainfall and an AMV index. Poor models fail to capture the teleconnection between the AMV and Sahel rainfall because the spatial distribution of SST multidecadal variability across the North Atlantic is incorrect. A lack of SST signal in the tropical North Atlantic and Mediterranean reduces the interhemispheric SST gradient and, through circulation changes, the rainfall variability in the Sahel. This pattern was also evident in the control simulations, where SST and Sahel rainfall variability were significantly weaker than historical simulations. Errors in SST variability were suggested to result from a combination of weak wind–evaporation–SST feedbacks, poorly simulated cloud amounts and feedbacks in the stratocumulus regions of the eastern Atlantic, dust–SST–rainfall feedbacks, and sulfate aerosol interactions with clouds. By understanding the deficits and successes of CMIP5 historical simulations, future projections and decadal hindcasts can be examined with additional confidence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.