Abstract

Nitrogen oxides (NOx), significant contributors to air pollution and climate change, form aerosols and ozone in the atmosphere. Accurate, timely, and transparent information on NOx emissions is essential for decision-making to mitigate both haze and ozone pollution. However, a comprehensive understanding of the trends and drivers behind anthropogenic NOx emissions from China—the world's largest emitter—has been lacking since 2020 due to delays in emissions reporting. Here we show a consistent decline in China's NOx emissions from 2020 to 2022, despite increased fossil fuel consumption, utilizing satellite observations as constraints for NOx emission estimates through atmospheric inversion. This reduction is corroborated by data from two independent spaceborne instruments: the TROPOspheric Monitoring Instrument (TROPOMI) and the Ozone Monitoring Instrument (OMI). Notably, a reduction in transport emissions, largely due to the COVID-19 lockdowns, slightly decreased China’s NOx emissions in 2020. In subsequent years, 2021 and 2022, reductions in NOx emissions were driven by the industry and transport sectors, influenced by stringent air pollution controls. The satellite-based inversion system developed in this study represents a significant advancement in the real-time monitoring of regional air pollution emissions from space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call