Abstract
This article provides a comprehensive review of the current trends and challenges in the development of 3D-printed heart valves and other cardiac implants. By providing personalized solutions and pushing the limits of regenerative medicine, 3D printing technology has revolutionized the field of cardiac healthcare. The use of several organic and synthetic polymers in 3D printing heart valves is explored in this article, with emphasis on both their benefits and drawbacks. In cardiac tissue engineering, stem cells are essential, and their potential to lessen immunological rejection and thrombogenic consequences is highlighted. In the clinical applications section, the article emphasizes the importance of 3D printing in preoperative planning. Surgery results are enhanced when surgeons can visualize and assess the size and placement of implants using patient-specific anatomical models. Customized implants that are designed to match the anatomy of a particular patient reduce the likelihood of complications and enhance postoperative results. The development of physiologically active cardiac implants, made possible by 3D bioprinting, shows promise by eliminating the need for artificial valves. In conclusion, this paper highlights cutting-edge research and the promise of 3D-printed cardiac implants to improve patient outcomes and revolutionize cardiac treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.