Abstract

Three-dimensional (3D) printing is one of the most well-liked new innovative and promising manufacturing techniques, which has demonstrated tremendous potential for the creation of biostructures in tissue engineering, particularly for bones, orthopaedic tissues, and related organs. 3D printing for the medical industry was considered a lofty pipe dream. Time and money, though, made it a reality. Today's 3D printing technology has a significant possibility to assist pharmaceutical and medical corporations in developing more specialised pharmaceuticals, enabling the quick creation of medical implants, and transforming how doctors and surgeons approach surgical planning. In today's practise of precision medicine and for individualised therapies, patient-specific anatomical models that are 3D printed are becoming increasingly helpful tools. In contrast to the conventional use of 3D printing to create cell-free scaffolds, 3D bioprinting requires various technical methods, such as biomimicry, autonomous self-assembly, and mini-tissue building blocks, to create 3D structures with mechanical and biological properties suitable for the deposition of living cells and the restoration of tissue and organ function. Cells, bioinks, and bioprinters are all necessary components of the bioprinting process, and each one of them has biological, technological, ethical, and cost- and clinically-effectiveness-related issues. As a result, there are several difficulties in integrating 3D bioprinting into widespread clinical practise. Currently, there are multiple applications for 3D bioprinting such as in surgery, cardiovascular system, musculoskeletal and even in drug screening. All of which will be discussed in this review.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call