Abstract
Three-dimensional (3D) printing with highly flexible fabrication offers unlimited possibilities to create complex constructs. With the addition of active substances such as biomaterials, living cells, and growth factors, 3D printing can be upgraded to 3D bioprinting, endowing fabricated constructs with biological functions. Urology, as one of the important branches of clinical medicine, covers a variety of organs in the human body, such as kidneys, bladder, urethra, and prostate. The urological organs are multi-tubular, heterogeneous, and anisotropic, bringing huge challenges to 3D printing and bioprinting. This review aims to summarize the development of 3D printing and bioprinting technologies in urology in the last decade based on the Science Citation Index-Expanded (SCI-E) in the Web of Science Core Collection online database (Clarivate). First, we demonstrate the search strategies for published papers using the keywords such as “3D printing,” “3D bioprinting,” and “urology.” Then, eight common 3D printing technologies were introduced in detail with their characteristics, advantages, and disadvantages. Furthermore, the application of 3D printing in urology was explored, such as the fabrication of diseased organs for doctor–patient communication, surgical planning, clinical teaching, and the creation of customized medical devices. Finally, we discuss the exploration of 3D bioprinting to create in vitro bionic 3D environment models for urology. Overall, 3D printing provides the technical support for urology to better serve patients and aid teaching, and 3D bioprinting enables the clinical applications of fabricated constructs for the replacement and repair of urologically damaged organs in future.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have