Abstract

We are concerned with the existence and qualitative properties of traveling wave solutions for a quasilinear reaction‐diffusion equation on the real line. We consider a non‐Lipschitz reaction term of Fisher–KPP type and a discontinuous diffusion coefficient that allows for degenerations and singularities at equilibrium points. We investigate the joint influence of the reaction and diffusion terms on the existence and nonexistence of traveling waves, and assuming these terms are of power‐type near equilibria, we provide classification of solutions based on their asymptotic properties. Our approach provides a broad theoretical background for the mathematical treatment of rather general models not only in population dynamics but also in other applied sciences and engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.