Abstract

The goal of this article is to design a more flexible algorithm than the ones used previously for solving constrained generalized equations. It turns out that the new algorithm even if specialized provides a finer error analysis with advantages: larger radius of convergence; tighter upper error bounds on the distances; and a more precise information on the isolation of the solution. Moreover, the same advantages exist even if the generalized equation reduces to a nonlinear equation. These advantages are obtained under the same computational cost, since the new parameters and majorant functions are special cases of the ones used in earlier studies. Applications complement the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.