Abstract
Hyper- and hypotonic stresses elicit apparently symmetrical responses in the alga Ventricaria. With hypertonic stress, membrane potential difference (PD) between the vacuole and the external medium becomes more positive, conductance at positive PDs (Gmpos) increases and KCl is actively taken up to increase turgor. With hypotonic stress, the membrane PD becomes more negative, conductance at negative PDs (Gmneg) increases and KCl is lost to decrease turgor. We used inhibitors that affect active transport to determine whether agents that inhibit the K(+) pump and hypertonic regulation also inhibit hypotonic regulatory responses. Cells whose turgor pressure was held low by the pressure probe (turgor-clamped) exhibited the same response as cells challenged by hyperosmotic medium, although the response was maintained longer than in osmotically challenged cells, which regulate turgor. The role of active K(+) transport was confirmed by the effects of decreased light, dichlorophenyldimethyl urea and diethylstilbestrol, which induced a uniformly low conductance (quiet state). Cells clamped to high turgor exhibited the same response as cells challenged by hypo-osmotic medium, but the response was similarly transient, making effects of inhibitors hard to determine. Unlike clamped cells, cells challenged by hypo-osmotic medium responded to inhibitors with rapid, transient, negative-going PDs, with decreased Gmneg and increased Gmpos (linearized I-V), achieving the quiet state as PD recovered. These changes are different from those exerted on the pump state, indicating that different transport systems are responsible for turgor regulation in the two cases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have