Abstract
In this work, results from atomistic molecular dynamics studies investigating the effect of surfactant concentration on the transport properties of bulk surfactant aqueous solutions, focusing on the anionic surfactant sodium dodecyl sulfate (SDS), are reported. The surfactant self-diffusion and the thermal conductivity of bulk aqueous SDS solutions were computed at a range of concentrations at room and boiling temperatures. Additionally, MP2f (Akin-Ojo et al., 2008, “Developing Ab Initio Quality Force Fields From Condensed Phase Quantum-Mechanics/Molecular-Mechanics Calculations Through the Adaptive Force Matching Method,” J. Phys. Chem., 129, p. 064108), one of a new generation water potentials is assessed for its suitability in reproducing the transport and thermal properties of bulk water. The thermal conductivity of MP2f water model was found to be: 0.64 W/(m⋅K) at 298 K and 0.66 W/(m⋅K) at 373 K, in much better agreement with the experimental values compared to both the rigid and the flexible TIP3P water model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Nanotechnology in Engineering and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.