Abstract

Two fluorescent molecular sensors CS1 and CS2 were designed and synthesized to probe the aggregate behavior of anionic surfactant SDS. CS1 was based on the photo-induced electron transfer (PET) mechanism, while CS2 was founded on the intramolecular charge transfer (ICT) mechanism. The photophysical properties of CS1–2 in anionic surfactant sodium dodecyl sulfate (SDS) solution were studied by fluorescence and UV–vis methods. The experimental results show that significant absorption and emission spectral responses of CS1 were observed with the addition of SDS: the absorbance and fluorescence intensity decreased first and then increased. The plot of fluorescence intensity of CS1 versus SDS concentration showed two break points, which might be ascribed to the critical micellar concentration (cmc) and the formation of premicelle (cac) aggregate, respectively. But the solution’s color of CS2 changed from yellow to red with increasing SDS concentrations. The large red-shift in both absorption (50 nm) and emission (55 nm) spectra of CS2 was resulted from the protonation of the electron accepting moiety (N C nitrogen), which enhanced the “push–pull” interaction of the ICT fluorophore. This was facilitated by the increase of local H + concentration around SDS premicelle and micelle. As a consequence, p K a values of CS1 and CS2 were elevated in SDS micelle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.